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The plane linear problem of the motion of a weakly stratified ideal liquid in a poly- 
gonal region is solved in the Boussinesq approximation. The liquid is set into motion by 
oscillations of parts of the boundary according to a given law. Problems of this type were 
studied for vertical barriers in a channel in [i, 2]. In this paper we study a special type 
of regions of flow, i.e., regions that are invariant under tension in one direction (a chan- 
nel with a protuberance, a barrier of finite thickness, etc.). A method of solving such 
problems in quadratures is suggested. 

i. Formulation of the Problem. We consider the plane unsteady motion of an exponen- 
tially stratified liquid filling a region S. The liquid is initially at rest and the bound- 
ary of the region of flow consists of segments of horizontal and vertical straight lines, 
8~ H and 8flv, with all of the vertical segments of the boundary lying on one straight line L. 
We choose the Cartesian x, y coordinate system so that the y axis is directed along L in the 
direction opposite to free fall acceleration g By Lfl we denote the part of L that lies in 
~; clearly, L~ = 8e v U F, where the points F are interior points of the region of flow. The 
motion of the liquid is caused by oscillations of the segments 8~ v according to given law, 
while the segments 8~ H remain motionless. The motion of the liquid must be described with 
the following assumptions: i) the amplitude of the oscillations of 8~ v is small in compari- 
son with the characteristic linear dimension D of the problem: 2) the vertical dimension 
over which the density of the liquid varies substantially is much greater than D; 3) the 
Boussinesq approximation holds. 

These assumptions make it possible to use a linear theory of the motion of a weakly 
stratified liquid. In dimensionless variables the current function ~(x, y, t) (t is the 
time) satisfies the relations [3] 

, ~-- 0 in arCH, * ---- l(X, t) on ~-~, (l.1) 

---- ~t ~-- 0 for t ----- --0, 

~2-+ 0 as x2 § y~.-+ oo. 

We look for the solution of the initial-value/boundary-value problem (l.l) in the class 
of functions describing the motion of a liquid with a finite kinetic energy. This condition 
includes constraints on the behavior of the solution near cusps of the boundary and at in- 
finity. We assume that at t > 0 the function f(x, t) is absolutely integrable over t for 
any y. 

The region fl can be represented as the union of half-strips of finite (or infinite) 
depth, whose vertical boundaries lie on L. The formulated problem can be solved for each 
such half-strip separately, e.g., by separation of variables, if we know the value, of the 
current function at its vertical boundary (@ = 0 at the horizontal boundaries of the half- 
strips). The problem, therefore, will be solved essentially if ~(0, y, t) is defined on 
the segments F. 

2. Method of Solution. We supplement the definition of the sought current function 
and the known function f at t < 0 so that ~ = 0, f = 0 at negative times and we apply the 

Fourier transform of t to Eqs. (i.i). We obtain 

(1 2 , - F  2.  F --(0)r ~2yy= 0 in~, 

~pF = o o~ o ~ ,  r  = F (y ,  co) on o~  ~. ( 2 . 1 )  
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Here 

,Y(x,y,o} = j r F (y ,~)  = J ] (y,t)e-~='~. 
0 0 

E q u a t i o n s  ( 2 . 1 )  mus t  be  c o n s i d e r e d  s e p a r a t e l y  f o r  [e I > 1 ( e l l i p t i c  c a s e )  and I~[ < 1 ( h y p e r -  
b o l i c  c a s e ) .  I n  t h e  f i r s t  c a s e  we make t h e  c h a n g e  o f  v a r i a b l e s  x = (1  - ~ - : ) Z / a x l ,  y = Yl 

and  t h e  s o u g h t  f u n c t i o n  0 F ( x z ( 1  - ~ - z ) 1 / 2 ,  Yz, ~)  = ~ ( x z ,  Yl ,  ~ ) .  An u n u s u a l  p r o p e r t y  o f  
the indicated regions is their invariance under such types of tension. 

The function ~ is the solution (I~I > i) of the Dirichlet problem 

and can  be c o n s t r u c t e d  in  q u a d r a t u r e s  by means o f  a c o n f o r m a l  mapp ing  o f  ~ i n t o  a c a n o n i c a l  
r e g i o n .  S i n c e  ~ i s  p o l y g o n a l ,  t h i s  mapp ing  can  a l w a y s  be  c o n s t r u c t e d  w i t h  t h e  a i d  o f  t h e  
S c h w a r t z - C h r i s t o f f e l  i n t e g r a l  [ 4 ] ,  i f  ~ i s  a s i m p l y  c o n n e c t e d  r e g i o n .  The f a c t  t h a t  ~ i s  
n o t  s i m p l y  c o n n e c t e d  means t h a t  f l o a t i n g  v e r t i c a l  p l a t e s  o f  z e r o  t h i c k n e s s e s ,  f a s t e n e d  a l o n g  
L, exist in the liquid. The discussion below is confined to simply connected regions of 
flow, but an important property, namely that the conformal mapping is independent of ~, holds 
in the general case as well. 

Suppose that the analytic function z = z(~) (z = x~ + iy~, r = g + iN) effects the con- 
formal mapping of the upper half-plane N > 0 into the region S, with the same direction of 
travel along the boundary. Then x~ = xz($, N), yl = y~($, q). We introduce new functions 

w(~, ~, ~) = v[z~(~, ~), y,(L ~), +1, Wo(~, ~) = Ffa(L 0), +l 

and note that W is the solution of the problem 

a W = 0  ( n > o ) ,  w = w d L  +) ( , l=0 ,  r  
w = 0 ( n : = o ,  ~ m l r o )  

(F v is the inverse image of segments of the boundary 3~ v under conformal mapping). 
consists of more than one segment, then F v is an unconnected set. In any event [5] 

If 8~ v 

The inverse mapping ~ = 5 ( z ) ,  
formula in the function ~: 

~ld~ 1 
W(~, ~,co)= +-  Wo(~1,0)) (~_~1)2~_I] 2,. 

= ~ ( x l ,  Y l ) ,  q = B ( x i ,  Yl )  e n a b l e s  us  t o  r e w r i t e  t h e  l a s t  

I [ 1] (=r Y~) G, (o, y,) JY2 
(xl, Yl, ~) = --a- J F (y~, o) ~ [g (x1' Yl) - -  : (0, y~)] ~ q- 112 (xt '  Yl)" 

But  i t  i s  s u f f i c i e n t  f o r  u s  t o  know �9 f o r  x~ = O, Yl e F, wh ich  c o r r e s p o n d s  t o  s e g m e n t s  o f  
F i n  t h e  i n i t i a l - v a l u e  p r o b l e m .  I n t r o d u c i n g  t h e  n o t a t i o n  t ( y )  = $ ( 0 ,  y ) ,  v ( y )  = q(O, y ) ,  
we o b t a i n  

' d 
l F (ou2, co) ~' (yl)~' (y'=)) //2 (Yl ~ F), ( 2 . 2 )  

We recall that the segments F and 8~ v do not intersect and, therefore, the integrand can 
have singularities only at the boundary points of F. 

Assume that ~(0, Yl, m) is known for all values of the parameter m, then 

r  y, t) = �9 (o,  
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We assume that ~(0, y, t) ~ 0 for t < 0, which is possible if ~(0, y, e) can be con- 
tinued analytically in the region Im~ < 0 and this continuation has no singular points. By 
virtue of (2.2) the analytic continuation of ~(0, y, ~) is equivalent to the analytic con- 
tinuation of F(y, ~). But this function is analytic for Imm < 0 by construction. Formula 
(2.2), therefore, defines ~(0, y, m) analytically for Im~ = 0. For Im~ = 0, IRem[ < 1 the 
function ~(0, y, ~) is the limit of the analytic function (2.2) as in Imm + -0, the passage 
to the limit being continuous. Formula (2.2) thus defines ~(0, y, ~) for m e R~ The ap- 
plication of the inverse Fourier transformation finally solves the problem. 

(o, u, t) = -E- / (a, ~, cy) ~.' (=) d= (2.3) 

The value of the current function on segments F thus is exactly the same as when stratifica- 
tion is not taken into account. 

3. Steady-State Regime. Formula (2.3) remains valid if f(y, t) does not decrease with 

increasing t. In particular, for f(y, t) = a(y)e i~~ we find ~(0, y, t) = A(y)e L~~ where 
A(y) = a(y) for y �9 8~ v and 

(3.1) 

The last comment gives us the answer as to how to solve the problem of generation and propa- 
gation of periodic internal waves in the presence of obstacles of a special type. Namely: 
if the amplitude a(y) and frequency ~0 of oscillations at the vertical solid boundaries are 
given, the amplitude of the oscillations on segments F is determined from formula (3.1). 
After this either the Dirichlet problem for the elliptic equation (if I~01 > i) or the 
boundary-value problem for the hyperbolic equation ([~01 < i) is solved in the half-strips 
whose union gives the region of flow g. They are solved by the method of integral[ trans- 
forms or by the method of change of variables. We note that the solution of stationary 
problems were obtained as limits of the solutions of nonstationary initial-value~boundary- 
value problems for long times. 

A particular case of regions of the indicated class are simply connected regions that 
are symmetric about the straight line L. For example, ~ is a rectilinear strip with a ver- 
tical barrier at the bottom. In relation to the proposed method this case is degenerate 
since for symmetric regions the linear problem under consideration can be modified and re- 
duced to problems with mixed boundary conditions in each half-strip [i]. 

4._z__Examples__ u. As an example let us define the function A(y) in accordance with (3.1) 
in the problem of periodic internal waves above a protuberance. The region of flow ~ is the 
entire (x~ y) plane without the fourth quadrant, i.e.~ 3~H = {Y = 0, x > 0}, B~v = {x = 0, 

y < 0}, F = {x = O, y > 0}, L = L~ = {x = O, -~ < y < +~}. The conformal mapping ~(z) of 

the region of flow onto the upper half-plane has the simple form ~(z) = z 2/3, 0 < arg z < 
3~/2. Accordingly, i(y) = y2/3/2 (y > O) and i(y) = _y2/~ (y < 0), v(y) = v~y2/3/2 (y > 0). 
Suppose that a(y) = ~(y + i), 6(y) is a Dirac delta function (the distance from the source 
of perturbation to the edge of the protuberance is taken to be the characteristic linear 
dimension D)~ Formula (3.1) gives the amplitude of the periodic oscillations on F: 

y = l ~  ( y > O ) .  A~ ( y ) = ] / ~  W~+y=i3+ 1 

We see that the current function is continuous on L and near the edge of the protuberance 
the velocity field has a singularity of the form O(r-i/3), where r = (x 2 + y2)i/2j, r § 0, 
and is quadratically integrable as y + +~, x = 0. 

We consider the same problem when ~ is the (x, y) plane with a vertical barrier 8~ v = 
{x = • y < 0}. Then 8~H =~, F = {x = 0, y > 0}. The conformal mapping of ~ onto the 

upper half-plane has the form ~(z) = ei~/~zl/2, --~/2 < arg z < 3~/2. In this problem, 8~v 

consists of two parts, corresponding to the two sides of a plate, whereby A(y) = ~--y for 
x = +0, y < 0, and A(y) = -/---y for x = -0, y < 0, A(y) = 0 for y ~ 0, v(y) = ~--for y > 0. 
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Formula (3.1) gives 

( i a+ t a -  (~) Y + -~- (~) -- 

A (y) = - ~  _ ~) 2 J ] / _ ~  (y _ ~) 
- - 0 0  0 

(y > o) 

[a-(y), a+(y) are the amplitudes of oscillations of the left and right sides of the barrier]. 

From this we have 

0 

A (y) = - ~  [a+ (a) + a -  (~)] ]/'1 = I (Y --  ~) 
- - o o  

(y > 0). 

We see that A(y) ~ 0 for a+(a) = -a-(~), i.e., when the thickness of the barrier varies dur- 
ing the oscillations. To be able to compare the A(y) in the two cases considered, we assume 
that a-(y) = 6(y + i), a+(y) = 0, whereby 

A~ (y) = 2n y + i "~ 

The subscript B shows that AB(Y) corresponds to the problem with a vertical barrier. It has 
the same properties as At(y) does in the example with a protuberance. Both of these func- 
tions reaches their maximum values for y = i, i.e., at a point at the same distance as the 
source from the edge of the obstacle, hence AI(1) = (33/2z) -l and AB(1) = (4~) -I. Moreover, 
0 < A• < AB(Y) for y > 0, which can be verified directly. 

For a protuberance and a barrier the motion of liquid in the left part of the region of 
flow (x < 0) is described by the same boundary-value problem, with the exception of the val- 
ues of the current function at x = 0, y > 0. The inequalities obtained allow us to expect 
that for the same intensity of the perturbation source the amplitudes of the internal waves 
will be larger for the barrier than for the protuberance. The existence of horizontal bound- 
aries results in smaller amplitudes of the internal waves. 

5. Diffraction of Induced Internal Waves at a Protuberance. We consider a model ini- 

tial-value/boundary-value problem, 

ACtt + Cxx = a'(y)a(x - xo)tt(t) s in ~ 0 0  in ~, 
r = 0 on @~, r = r = 0 for t = --0, (5.1) 

which in the Boussinesq approximation describes the propagation of induced internal waves 
above a protuberance. Here ~ is the entire (x, y) plane without the fourth quadrant (x > 0, 
y < 0); H(t) is the Heaviside function (H(t) = 1 for t ~ 0 and H(t) = 0 for t < 0); a(x) is 
a smooth finite function (a(x) ~ 0 for [x[ ~ c > 0, -x0 > c). Internal waves are generated 

by dipoles distributed over the interval y = 0, x0 - c < x < x0 + c with density a(x - x0). 
The wave generator begins to operate at time t = 0 and its intensity varies periodically 
with frequency ~0 (0 < m0 < i). We must construct the main term of the asymptotic form of 

the solution of (5.1) for long times. 

When the entire plane (~ = R 2) is the liquid-occupied region, we denote the solution of 
(5.1) by ~(1)(x, y, t). Clearly, for t > 0 we have 

~(z) (x, y, t) = ~(~)(x, y) sin ( % 0  + ~ ) ( x ,  y, t), ( 5 . 2 )  

w h e r e  $ c ( 1 ) ( x ,  y )  d e s c r i b e s  t h e  p e r i o d i c  m o t i o n  o f  t h e  l i q u i d  and  s a t i s f i e s  t h e  i n h o m o g e n e o u s  
h y p e r b o l i c  e q u a t i o n  

0 2 , h ( l )  a211~(1) 
{ 2\ ~ e 2 c 

- -  COo ~ =  a (x - -  %)  a'  (y), 
- -  COo) Ox2 oy" (5.3) 

and ~H(1)(x, y, t) describes a nonstationary correction for the disagreement of the periodic 
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solution [first term in (5.2)] with the initial conditions. Here ~H(z)(x, y, t) + 0 as t + 
~. The solution of Eq. (5.3) is given by the D'Alembert formula and has the form 

1~ 1, ( x , y )  2~; ~ x - -  ~o + ~-----7-- y + a x -  zo ~ y ) ] .  

The carrier of the smooth function ~ c ( Z ) ( x ,  y) consists of two intersecting strips 

S• {x, yl [X--Xo 4- ~ft-~)~y[<c} ' 
ca) o 

of which only the strip S + intersects the boundary of the initial region ~. 
tion occurs along the segment 

This intersec- 

O) 0 f-O 0 }  ,yl x=O, 

on which 

, (~)  (x ,  y)  = - -  2m---~o a "~a Y - -  x~ " 

The solution of the initial-value problem is 

(X, y, t) = ~(~) (X, y) sin mot ~ ~ B(x, y, t) + ~Z (X, y, t), ( 5 . 4 )  

where ~B(X, y, t) and ~l(X, y, t) ensure satisfaction of the boundary and initial conditions, 
respectively. The initial-value and boundary-value problems for these correction functions 
are written as 

a 2 oi 2 
aT ~ A% + a-~ ~ B= 0 i,-~f~, 

~o-$ - -  x o sin (mot) for  x = O, y < O, 

a 
~B-----0 for x>0, y:0, ~B:~B:0 for t=0, 

a2 ~2 

at ~O~(lc )(z, y) for t ----- O. 

( 5 . 5 )  

At each point of the liquid-occupied region ~i(x, y, t) + 0 as t ~ = and, hence, the main 
term in the asymptotic form of the solution of (5.1) for long times is determined by the 
first two terms in (5.4). Since the initial-value/boundary-value problem for ~B(X, y, t) 
has the form (i.i) and, hence, it can be solved by the method given in Secs. 2 and 3. In partic- 
lar, at long times the asymptotic form of the solution of (5.5) is 

where ~B(c)(x, y) satisfy 

~B(X, y, t) = r (X, y) s in (coot) + o (1), 

(s.6) 

whose solution is constructed separately on the left and right sides of the flow region, 
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(x < 0, -~ < y < +~) and (x > 0, y > 0), respectively. The boundary conditions 

~P(;=2o--~a , Oy_Xo ( x = - - 0 ,  y<0) ,  r  y>0) ,  
�9 ( 0 0  

(5.7) 

must be satisfied at the boundary of the left part of the region (x = -0) and the conditions 

~(~ = A (u) (x = + 0, y > 0), r  = o (~ > o, y = o) 

must be satisfied at the boundary of the right part. Here 

A (y) ----- n~Y~/s i a (a) da 
2 ~ o ~  Jo(~ + Xo)i~3 (,~ (~ + ~o)~C~o(o + ~o) ~3 ~,~3 + y,~31; 

118 nO = (.D 0 / ( ~ .  - -  0)02) lf6 

If the distance from the generator of internal waves to the protuberance is large or if 
the carrier of the function a(x) is small, i.e., c/Ix01 is much smaller than unity, then we 
have the simple asymptotic formula 

- (00,(% I xol] v~" 
--r 

This suggests that A(y) = O(Ix01 -I) as Ix01 ~ ~. The solution of the boundary-value problem 
(5.6), (5.7) can be written in quadratures by means of integral transforms. A method for 
uniquely isolating the solution of this problem is indicated in [3]. 
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